S0957-4166(96)00053-5

Reaction of (indol-3-yl)ethanediol with L-ascorbic acid

Maria N. Preobrazhenskaya*, Eduard I. Lazhko, and Alexander M. Korolev Institute of New Antibiotics, Russian Academy of Medical Sciences, Moscow, 119867 Russia

Abstract. Interaction of (indol-3-yl)ethane-1,2-diol with L-ascorbic acid under mild conditions yielded a mixture of products of the L-ascorbic acid 2-C alkylation with the substituted skatyl cation stabilized by the 3-CO hemiketal formation with the participation of the HOCH₂ moiety of (indol-3-yl)ethane-1,2-diol. Under the action of ethanolic HCl, tricyclic ketals were formed. The stereochemical configuration of the compounds was determined by NMR methods. Copyright © 1996 Published by Elsevier Science Ltd

The recent interest to ascorbigen, 2-C-(indol-3-yl)methyl- α -L-xylo-3-hexulofuranosonic acid γ -lactone 1, which forms in cabbage from 3-hydroxymethylindole and L-ascorbic acid 2, is connected with the demonstrated anticarcinogenic properties of a diet rich in cabbage or other vegetables of the cruciferous family 1 . The interaction of polyfunctional indolecarbinols with 2 has not been investigated though some of these compounds [e.g. (indol-3-yl)glycerol phosphate which is a precursor of tryptophane biosynthesis 2] are of great biological importance.

(Indol-3-yl)ethanediol 3³ and 2 in aqueous ethanol at room temperature give a mixture of compounds 4, 5, and 6. Preparative TLC of the mixture⁴ led to a single 4⁵ and a mixture of 5 and 6⁶. Attempts to separate 5 and 6 were unsuccessful: the individual compounds 5 or 6, isolated after TLC, appeared to be mixtures of these compounds, thus suggesting 5 and 6 to be in equilibrium.

The structure elucidation of the compounds 4, 5, and 6 was based on the ¹H and ¹³C NMR data (Tables 1, 2). Signal assignments were accomplished as follows: 1"-H proton was identified by irradiation of 2'-H proton (long-range ⁴J_{H.H} was present) and then 2"-H_a and 2"-H_b were determined through COSY connectivity;

signals in the indole part were assigned as described before⁷. In the ascorbic acid moiety, 6-CH₂ protons were defined from APT and HETCOR experiments; DFCOSY permitted identification of the 5-H and 4-H signals. The $J_{4.5}$ values, which are above 2 Hz, close chemical shifts of the 6-H_a and 6-H_b protons and similar $J_{5,6a}$ and $J_{5,6b}$ values in NMR spectra of 4 and 5 show that the CH₂OH group of the ascorbic acid moiety does not participate in the hemiketal formation as it would if 4 or 5 had the ascorbigen-like skeleton. As in ¹³C NMR spectra of 1, 4 and 5 chemical shifts of 3-C atoms are similar, 4 and 5 should be hemiketals. It demonstrates that in 4 and 5 2-C-substituted L-ascorbic acid is stabilized by the hemiketal formation with the participation of the CH₂OH group neighboring to the skatyl carbon atom (1¹¹). These compounds represent a new type of L-ascorbic acid derivatives.

The NMR spectra of compound 6 show that the lactone ring is opened and the 4-C-OH group is unsubstituted whereas a full ketal structure is present. It suggests that 6 is a product of hydrolysis of compound 5 accompanied by the cyclic ketal formation.

The mixture of 4, 5 and 6 was transformed into a mixture of ketal derivatives 7, 8 and 9 by the incubation in 2% ethanolic HCl solution at room temperature. Similarly, 4 gave individual 7⁸, and the mixture of 5 and 6 gave a mixture of 8 and 9. Compounds 8 and 9 were separated by TLC⁹⁻¹¹.

8 NOE effects

	Chemical shifts (coupling constants, Hz)											
	Ascorbic acid moiety				Indole moiety*					-CH-CH ₂ O		
Com-	4-H	5-H	6-H _a	6-H _b	2'-H	4'-H	5'-H	6'-H	7'-H	1"-H	2''-H _a	2"-H _b
po-	$(J_{4,5})$	$(J_{5,6a})$	$(J_{6a,6b})$	$(J_{5,6b})$	$(J_{1^{\prime\prime},2^{\prime}})$		ļ			$(J_{1^{\prime\prime},2^{\prime\prime}b})$	$\left \left(\mathbf{J}_{1^{\prime\prime},2^{\prime\prime}a} \right) \right $	$(J_2^{\cdot,a,2^{\cdot,b}})$
und												
1	3.76	4.20	3.99	4.12	7.20	7.62	6.97	7.03	7.31	3.23	-	-
	(0.7)	(3.3)	(9.7)	(5.7)						3.40		
4	4.66	4.07	3.70	3.64	7.30	7.77	7.02	7.10	7.35	4.11	4.40	4.31
	(2.5)	(6.7)	(11.0)	(6.7)	(0.6)					(7.8)	(10.0)	(8.5)
5	4.59	4.04	3.64	3.59	7.17	7.75	7.00	7.09	7.33	4.15	4.49	4.16
	(2.3)	(6.9)	(11.0)	(6.6)	(0.7)					(7.8)	(10.0)	
6	4.45	4.14	4.09	3.60	7.24	7.63	7.03	7.11	7.36	4.48	4.76	4.43
İ	(4.4)	(5.9)	(9.0)	(4.7)	(0.5)					(4.5)	(7.4)	(8.2)
7	4.61	4.31	4.10	3.96	7,32	7,58	7,01	7.10	7.36	4.15	4.45	4.35
	(2.2)	(3.7)	10.0)	(4.9)	(0.5)					(7.4)	(11.3)	(8.0)
8	4.52	4.19	4.06	4.01	7.31	7.68	7.02	7.12	7.34	3.94	4.71	4.36
	(2.2)	(3.6)	(10)	(4.9)	(0.8)					(3.1)	(5.6)	(8.8)
9**	4.42	4.29	4.10	3.52	7.08	7.76	6.99	7.08	7.30	4.27	4.70	4.42
	(7.2)	(7.3)	(8.7)	(6.9)	(1.0)					(8.5)	(11.5)	(7.3)

Table 1. ¹H NMR spectra of compounds 1 and 4-9 in CD₃OD¹²

Table 2. ¹³C NMR spectra of compounds 1 and 4-9 in CD₃OD

Com-		-CH-CH₂O-								
pound	1-C	2-C	3-C	4-C	5-C	6-C	1"-C	2"-C		
1	178.74	80.92	108.68	88.32	75.51	75.51	31.32	-		
4	178.74	80.76	108.70	84.91	71.13	63.06	46.00	73.31		
5	178.61	80.62	111.74	84.74	71.13	62.95	47.21	71.24		
6	176.27	83.53	110.30	78.27	77.06	71.87	40.13	73.76		
7	175.89	85.85	119.88	90.42	75.19	75.00	46.98	75.00		
8	174.85	85.85	118.69	89.80	75.35	74.80	42.48	75.48		
9*	172.72	86.88	115.51	78.89	75.35	71.75	46.53	71.52		
Indole ring										
	2'-C	3 '-C	4'-C	5'-C	6'-C	7'-C	8'-C	9' - C		
1	126.59	107.50	119.99	119.73	122.25	112.04	125.15	135.74		
4	125.72	108.60	120.34	119.88	122.46	112.13	137.96	129.26		
5	124.89	108.09	119.72	120.43	122.56	112.36	138.13	129.05		
6	123.59	105.44	120.02	120.44	122.45	112.08	137.35	128.59		
7	125.48	112.20	119.94	119.89	122.49	112.20	137.79	129.08		
8	123.46	111.51	120.20	120.01	122.82	112.19	137,90	128.33		
9*	123.10	109.83	120.77	119.76	122.53	112.61	137.79	129.23		

^{*}Signals of OC₂H₅ group were observed at 62.60 and 14.21 ppm.

The J_{4.5}, J_{5.6a} and J_{5.6b} values and chemical shifts of the 3-C and 6-C atoms in ¹³C NMR spectra of 7 and 8 show the presence of a second furanose cycle formed with the participation of the ascorbic acid's 6-CH₂OH

^{*} In all the compounds investigated the coupling constants of the indole ring protons were the following: $J_{4',5'}=8.0, J_{4',6'}=1.0, J_{4',7'}=1.0; J_{5',6'}=7.1; J_{5',7'}=1.0; J_{6',7'}=8.1 \text{ Hz.}$

^{**} Signals of the OCOOC₂H₅ group are present at 4.07 and 1.12 ppm.

group. 1H NMR and ^{13}C NMR spectra of 9 demonstrate the presence of the COOC $_2H_5$ group and the unsubstituted 4-OH group.

To determine the configuration at the skatyl atom 1", NOE difference experiments were performed for compounds 4 and 8 under saturation of the 2'-H indole proton signal. An increase in the intensity of the 4-H (9%), 2"-H_b (1%) and 1"-H (2%) signals was observed for compound 8, while in compound 4 irradiation of the 2'-H proton only led to an increase in the 2"-H_a(4%) and 1"-H (2%) signals intensity. It demonstrates that in compound 8 and, therefore, 5 the indole moiety is in the *endo* position (1"-S configuration) whereas in compound 4 and, therefore, 7 it is in the *exo* position (1"-R configuration). Opening of the lactone ring in compound 9 enables a less rigid conformation for this compound, 4-H and 2'-H protons being more distant than in 8. This was confirmed by irradiation of the 2'-H signal, which only led to an increase in intensity of the 1"-H (2%) and 2"-H_b (0.5%) signals (but not of 4-H). Easy equilibration of 5 and 6 suggests the 1"-S configuration of 6 and, therefore, 9. The instability of 5 can be due to the sterical hindrance displayed by the indole ring in the *endo* position.

REFERENCES AND NOTES

- Preobrazhenskaya, M. N., Bukhman, V. M., Korolev, A. M., Efimov, S. A. Pharmacology and Therapeutics. 1994, 60, 301.
- 2. Spande T.F. Hydroxyindoles, Indole Alcohols and Indolethiols. in Indoles. Part III. Houlihan, N.J.; Ed.; John Wiley & Sons: New York-Toronto, 1970, p. 170.
- 3. Preobrazhenskaya, M. N., Zhirnova, K. G., Kostyuchenko, N. P., Suvorov, N.N. Zhurn. Org. Khim. 1972, 8, 994.
- 4. For preparative and analytical TLC plates, covered with silica gel F₂₅₄ (Merck) were used in a CHCl₃-MeOH 7:1 mixture. 4: R_f 0.19; 5+6 R_f 0.23. Separation yielded 38% of 4 and 25% of 5+6. HPLC: 6.38 (4), 7.77 and 9.68 min (5+6) (Spectra-Physics SP-800 instrument, Partisil ODS column, acetonitrile 0.05M NaH₂PO₄ (pH 3.35), gradient from 13 to 60% of acetonitrile, 25 min.
- 5. Compound 4. Anal. Calcd for $C_{16}H_{17}NO_7$: C 57.31; H 5.11; N 4.17. Found C 57.23; H 5.23; N 4.06. IR: 1790 cm⁻¹. [α]²⁰_D -14.6 (*c* 1, EtOH).
- 6. Mixture 5+6. Anal. Calcd for C₁₆H₁₇NO₇: C 57.31; H 5.11; N 4.17. Found C 57.53; H 5.23; N 4.40. IR: 1790, 1620 cm⁻¹.
- 7. Lazhko, E. I., Korolev, A. M., Preobrazhenskaya, M. N. Khim. Geterocycl. Soedin. 1993, 352.
- 8. Compound 7. IR: 1790 cm^{-1} . [α]²⁰_D +7.2 (c 1, EtOH). EI-Ms [m/z(relative intensity, %)]: 317 (8) [M]⁺, 170 (51) [M C₂H₇O]⁺, 143 (23) [Indolyl-CH-CH₂]⁺, 130 (100) [C₉H₈N]⁺. R_f0.65 in a CHCl₃ MeOH 4:1 mixture.
- 9. Compound **8.** IR: 1790 cm⁻¹. $[\alpha]^{20}_D$ +35.7 (c 1, EtOH). EI-Ms [m/z] relative intensity, %)]: 317 (5) $[M]^+$, 171 (5) $[M-C_2H_6O]^+$, 170 (42) $[M-C_2H_7O]^+$, 143 (27) $[Indolyl-CH-CH_2]^+$, 130 (100) $[C_9H_8N]^+$. R_1 0.60 in a CHCl₃ MeOH 4:1 mixture.
- 10. Compound 9. IR: 1720, 1770 cm⁻¹. $[\alpha]_D^{20} + 34.4$ (c 1, EtOH). EI-Ms [m/z(relative intensity, %)]: 363 (31) $[M]_L^{\dagger}$, 143 (100) $[\text{Indolyl-CH-CH}_2]_L^{\dagger}$, 130 (70) $[\text{C}_0\text{H}_8\text{N}]_L^{\dagger}$, R_f 0,70 in a CHCl₃-MeOH 4:1 mixture.
- Optical rotations were measured on a Perkin-Elmer 241 instrument, IR (in KBr pellets) on a SP-1100 spectrometer (Pye Unicam), EI-mass-spectra were obtained on an SSQ 710 Finnegan instrument at 70 eV.
- 12. All NMR data were obtained with a Varian VXR-400 instrument operated at 400 MHz for ¹H and at 100.6 MHz for ¹³C, chemical shifts are given in ppm relative to the signal of the solvent (CD₃OD) used (δ 3.32, 49.00 ppm).